
Ciera User Guide
Levi Starrett

Version 2.1.0

Table of Contents
Preface. 1

History . 1

What Ciera is . 1

What Ciera is not . 1

Relationship to Maven . 1

Versioning policy . 2

Jump Start. 3

Example projects . 3

Dependencies . 3

Download the Ciera runtime library . 3

Creating an xtUML project. 4

Setting up the Maven build . 4

Building the project . 6

Running the project . 7

Congrats! . 7

Features. 8

System modeling . 8

Multi domain support. 8

JSON serialized message passing . 8

Component versioning . 9

Class modeling . 9

Exclusions . 9

Use key letters for name . 10

State modeling . 10

OAL action modeling. 10

Package references . 10

Automatic selection sorting. 10

Simulated time . 10

Integration with hand written Java. 11

Basic principle . 11

External Entities . 11

Running a Ciera model. 11

Running a Ciera model in a subordinate thread.. 11

Built-in utilities . 12

xtUML standard bridges . 12

Ciera specific utilities . 12

Restrictions and Limitations . 14

Naming . 14

Coverage analysis. 14

Interfaces . 14

State Machines . 14

Class-based (assigner) state machines . 14

Creation events . 15

Polymorphic events . 15

Other. 15

Types . 15

Deployments . 15

Miscellaneous . 15

Known bugs. 15

Marking. 16

Concepts . 16

Application name. 16

Application package . 17

Root package . 17

Sort comparator . 17

Simulated time . 18

Initialization function. 18

Component version . 18

Element exclusions . 19

Key letters for generated class name . 19

Port implementation class . 20

Other marks . 20

Build. 21

Quick word about Maven. 21

Requirements for a Ciera build . 21

Pre-build. 21

Components of the pom.xml file . 22

Ciera dependency strategy. 25

ciera-maven-plugin in detail . 26

pyxtuml-pre-build . 27

bridgepoint-pre-build . 28

core . 29

sql . 30

template . 30

Building without Maven. 30

Download the artifacts . 30

Pre-build . 30

Generate code. 31

Compile the Java code . 31

Run the application. 31

Ciera core generator CLI . 31

Running projects . 31

Using the Ciera "nightly build" . 32

Persistence . 33

SQL loader/dumper . 33

Enabling the SQL loader/dumper . 33

The SQL external entity . 33

Limitations . 34

Generic loader interface. 34

Support for other loader/dumpers . 35

Persistence related marks . 35

Instance loading. 35

Non persistent instance IDs . 35

Non persistent elements . 35

Templating . 37

RSL template tool . 37

Enabling the template tool . 37

The T external entity . 37

Limitations . 38

Templating marks . 39

Template directory . 39

Experimental Features . 40

Asynchronous applications . 40

Amazon DynamoDB instance loader/dumper . 40

HTTP endpoints . 40

Ciera Maven archetype. 41

Preface
Welcome to the Ciera User Guide. This guide will give you a comprehensive overview of Ciera, how
it works, the features it supports, and how to use them. Ciera is an open source project and depends
on the community to move forward.

History
I started writing Ciera in early 2017 just as a personal project — a sort of playground to experiment
with model-based model compiler concepts. At times I envisioned it to be a replacement model
compiler for MC-Java to be the architecture on which the BridgePoint project rests (I haven’t
completely lost that vision, but it is more blurry than it once was). At times I tried to make it
everything to everyone. I had a fascination with making the generated OAL as readable as possible,
which sometimes compromised in other areas that should not have been compromised. It has
always been a goal to replace MC-3020 as the primary model compiler used for compiling model
compilers. Over the years it has morphed and changed and now it stands as a somewhat complete
general purpose Java model compiler with a handful of features useful to model compiler
developers and a handful of experimental features. Instead of starting with the xtUML spec and a
set of test models, as Ciera has grown, it has implemented just enough of xtUML to support the
current project and therefore is somewhat skeletal.

What Ciera is
• A personal project that turned into a semi feature complete model compiler

• A generic Java model compiler

• A tool for building other model compilers

• A fully self-building, self-supporting model compiler

• An open source project

What Ciera is not
• A commercial project

• A thoroughly tested/verified architecture

• An architecture suited to real time or low memory environments

Relationship to Maven
As a Java project, I chose Maven as the preferred build tool for Ciera. As will be explained later,
Ciera does not strictly depend on Maven, but it is almost not worth talking about using Ciera
without talking about it in the context of a Maven build environment.

1

Versioning policy
Ciera adheres to the Maven versioning convention in the following format:

<major>.<minor>.<incremental>[-SNAPSHOT]

<major> is the major version. Major versions are not compatible with one another.

<minor> is the minor version. Minor version gets incremented with feature updates that do not
break backwards compatibility with prior releases in the same major version

<incremental> is the incremental version. It is updated any time a new release is published that does
not have a significant new feature set (most if not all bug fixes)

-SNAPSHOT is appended for unstable development versions. Non-snapshot versions may not be re-
released without incrementing the version, but snapshot versions may change, so use caution.

2

Jump Start
In this section, we will go start to finish on how to create, build, and run an xtUML project from
scratch. This guide assumes some basic knowledge of how to use BridgePoint. For help with
BridgePoint and xtUML, please visit xtUML.org.

Example projects
If you have not already, go to the examples page of the repository. That is a great place to start if
you find yourself wanting to learn by viewing existing projects.

Dependencies
• BridgePoint latest nightly

• Maven

• pyxtuml

On Ubuntu linux:

sudo apt-get update && sudo apt-get install -y maven python-pip wget unzip
pip install pyxtuml
wget https://s3.amazonaws.com/xtuml-releases/nightly-build/org.xtuml.bp.product-
linux.gtk.x86_64.zip
unzip org.xtuml.bp.product-linux.gtk.x86_64.zip

On macOS:

brew install maven wget unzip
pip install pyxtuml
wget https://s3.amazonaws.com/xtuml-releases/nightly-build/org.xtuml.bp.product-
macosx.cocoa.x86_64.zip
unzip org.xtuml.bp.product-macosx.cocoa.x86_64.zip

Download the Ciera runtime library


This step is not necessary if you have built a Ciera project before (including the
examples). It simply downloads the runtime library (including modeled artifacts).

In a terminal window:

mvn -DgroupId=io.ciera -DartifactId=runtime -Dversion=2.1.0 dependency:get

3

https://xtuml.org
https://github.com/xtuml/ciera/tree/master/examples
https://s3.amazonaws.com/xtuml-releases/nightly-build/buildfiles.html

Creating an xtUML project
1. Open BridgePoint and create a new xtUML project. Call the project "MyCieraProject"

2. Create a new package, component, package, and function in the project. Name them "system",
"test", "functions", and "foo" respectively. Your tree should now look something like this:

3. Enable inter-project references. Right click on project > Properties > xtUML Project > Inter-
project References.

4. Import the Ciera runtime library. Import > General > Existing Projects into Workspace. Tick the
"Select archive file" and navigate to ~/.m2/repository/io/ciera/runtime/2.1.0/runtime-
2.1.0.jar. Select the runtime project and click "Finish".

5. Open the "foo" function and enter the following code:

LOG::LogInfo(message:"Hello, World!");
control stop;

Setting up the Maven build
1. Navigate to the Eclipse project location

2. Create a directory called gen/

3. Create a file called gen/features.mark with the following contents:

4

*,ApplicationName
*,ApplicationPackage
*,AsyncApplication
*,NonPersistentInstanceIds
*,RootPackage
*,SortComparator
*,TemplateDir
Association,Exclude
Attribute,NonPersistent
Component,EnableSimulatedTime
Component,InitFunction
Component,InstanceLoading
Component,Version
Model Class,Exclude
Model Class,NonPersistent
Model Class,UseKeyLettersForName
Package,DoNotSerialize
Port,BaseClass
Port,HttpEndpoint

4. Create a file called gen/application.mark with the following contents:

,RootPackage,,MyCieraProject::system
system::test,InitFunction,Component,foo

5. Create a file called pom.xml with the following contents:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>io.ciera</groupId>
 <artifactId>MyCieraProject</artifactId>
 <packaging>jar</packaging>
 <version>1.0.0-SNAPSHOT</version>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 </properties>
 <dependencies>
 <dependency>
 <groupId>io.ciera</groupId>
 <artifactId>runtime</artifactId>
 <version>2.1.0</version>
 </dependency>
 </dependencies>

5

 <build>
 <plugins>
 <plugin>
 <groupId>io.ciera</groupId>
 <artifactId>ciera-maven-plugin</artifactId>
 <version>2.1.0</version>
 <executions>
 <execution>
 <id>pre-build</id>
 <goals>
 <goal>pyxtuml-pre-build</goal>
 </goals>
 </execution>
 <execution>
 <id>ciera-core</id>
 <goals>
 <goal>core</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 <resources>
 <resource>
 <directory>${project.basedir}</directory>
 <filtering>true</filtering>
 <includes>
 <include>models/**/*.xtuml</include>
 <include>.project</include>
 </includes>
 </resource>
 <resource>
 <directory>${project.build.directory}/generated-sources/java</directory>
 <filtering>true</filtering>
 <includes>
 <include>**/*.properties</include>
 </includes>
 </resource>
 </resources>
 </build>
</project>

Building the project
1. In the project directory:

mvn install

6

Running the project
1. In a terminal:

java -cp $HOME/.m2/repository/io/ciera/runtime/2.1.0/runtime-
2.1.0.jar:$HOME/.m2/repository/io/ciera/MyCieraProject/1.0.0-
SNAPSHOT/MyCieraProject-1.0.0-SNAPSHOT.jar mycieraproject.MyCieraProjectApplication

Congrats!
You’ve built and run your first Ciera project.

< | next: Features >

7

Features

Features
Ciera is a full model compiler which can generate xtUML models top to bottom from system
modeling all the way to action language. The following is a summary of the features of Ciera and
how to use them.

System modeling

Multi domain support

Ciera supports generating code for single and multi-domain projects. The compilation unit for Ciera
is a package (referred to as the "root" package). Any component or component reference in the root
package will be generated by Ciera. Any port satisfactions in the root package will also be generated
into the system. To specify the root package, the RootPackage mark must be specified. See Marking:
Root Package for more detail on marking. It is possible to maintain a project with multiple system
configurations by modeling several packages that can act as the "root" package. Simply change the
application mark and regenerate to switch bewteen two configurations. There is no support for
generating code for multiple configurations simultaneously.

Ciera only generates model elements contained within components in the root package. Any types,
EEs, or other elements required by the system must be imported into the component using a
package reference. See more about package references in Package references.

JSON serialized message passing

Ciera was designed with deploying components across networks in mind. For this reason, the
message passing mechanism between components comes with built-in JSON serialization and
deserialization support. For every message sent from a port, an instance of the IMessage interface is
created for each message and passed to the port of the peer component. There, the values are
unpacked and passed to the implementation within the component. The standard implementation
of IMessage is simply an ordered list of values which correspond to the interface message
parameters.

There are two ways to use the JSON serialization of messages to implement custom interface
transports.

Hand written "half" components

A user can create a hand written implementation of the component itself which "forwards"
incoming messages across some transport to the other "half" of the component. In this scheme an
instance of the component exists on both sides of the network and the component implementation
itself is responsible for passing messages internally. The serialize method on the IMessage instances
can be used to produce well formed JSON before sending across the chosen transport.

This is the simplest way to implement interfaces across some network, however the downside is
that it is difficult to have real modeled behavior in the component cleanly without having to
extensively modify generated code and continue to keep it up to date when the model changes.

8

Marking#root-package
Marking#root-package


This is the scheme that the GPS watch UI component uses. It works well since all of
the behavior of the UI component is hand written graphical interface details.

Custom IPort implementation

A user can write a new Java class that implements the IPort interface and specify this class as the
base for a generated port. In this scheme, the transport mechanism can be embedded directly into
the port itself with no need for overriding generated code with a hand written class. This
mechanism is much cleaner, but much more involved. This method would be suggested if a
particular transport mechanism is expected to be widely used throughout the model (and not just a
single case as in the GPS GUI example).

The details on how to mark a custom class as the base class for port can be found at Marking: Port
implementation class.



This mechanism is considered advanced usage and there is not much
documentation to aid in implementing it. If a user would go attempt to implement
a custom port class, he should look closely at the default implementation in the
Port class. This class should also be used as the supertype for any custom
implementations.

Component versioning

Ciera supports tagging components with version identifiers. By default, the version is the Maven
artifact version plus a date and timestamp (if using the maven build plugin). A user can replace the
maven artifact version with any string using an application mark. See details on marking at
Marking: Component version.

Class modeling
Ciera supports all types of class modeling constructs and relationship types. Derived attributes,
referential attributes, class and instance operations, identifiers, and imported classes are all
supported.

Exclusions

By default, Ciera generates an interface definition and an implementation class for every modeled
xtUML class. All relationships are also generated. Classes and associations can be marked for
exclusion. See details about how to mark them at Marking: Element exclusions. No code will be
generated for excluded classes and associations.


If you exclude a class, be sure to exclude all associations in which it participates; if
you exclude an association, be sure to exclude all classes that participate in it. It is
undefined behavior to leave associations with "orphaned" ends.

9

Marking#port-implementation-class
Marking#port-implementation-class
Marking#component-version
Marking#element-exclusions

Use key letters for name

By default, Ciera uses the name of the class to generate the Java class name (camel case with spaces
removed and capitalized first letter). Sometimes, this can cause issues with name conflicts. The
class key letters can be used as is for the class name. See Marking: Key letters for generated class
name for details on how to apply this mark.

State modeling
Ciera supports basic state modeling. All features necessary to achieve any behavior is supported in
Ciera, however many features are not present that would have to be replaced with more involved
(and sometimes clunky) patterns. For state modeling, it makes more sense to discuss it from the
perspective of what is not supported. For that, see Restrictions/Limitations: State Machines.

OAL action modeling
Ciera supports the majority of the OAL specification. Like state modeling, it is better to discuss in
terms of what is missing. See Restrictions/Limitations

Package references
Ciera supports package references within components. Any elements defined in a package referred
to in a component will be translated as if they were defined within the referring package.

Automatic selection sorting
For some applications, it makes sense to always sort selections by a specific attribute (e.g an integer
identifier or a name). For model compilers, this allows output code to be diffable without explicit
sorting in the application.

Ciera allows users to mark an attribute to be the global default sort key. Details on how to mark this
can be found at Marking: Sort comparator

Ciera also provides more complex sorting with the SORT external entity. See Ciera specific utilities
for more information.


If a sort key is marked, every selection of a class with that attribute will be sorted.
Consider how this may effect application performance.

Simulated time
Ciera supports executing models in simulated time. In simulated time, after initialization, the
system clock is advanced to the expected generation time of the next delayed event. This event is
generated and the system is allowed to run until no more events are waiting. The system clock is
once again advanced to the next delayed event and so on.

Simulated time allows applications to be tested without waiting for wall clock time events, while

10

Marking#key-letters-for-generated-class-name
Marking#key-letters-for-generated-class-name
Restrictions_Limitations#state-machines
Restrictions_Limitations
Marking#sort-comparator

maintaining timing rules.

The details on how to mark a system to use simulated time can be found at Marking: Simulated
time.

Integration with hand written Java
Ciera provides the ability to integrate with external libaries or legacy code with hand written Java.

Basic principle

Ciera allows any generated Java file to be overridden by a handwritten implementation by placing
a file with the identical path in the source folder.

For example, the default output location for a Maven based Ciera build is target/generated-
sources/java and the default source folder is src/main/java. A generated Java class FooBar located at
target/generated-sources/java/foo/bar/FooBar.java could be replaced by installing a hand written
class at src/main/java/foo/bar/FooBar.java. In this case, the original generated class will be
renamed to FooBar.java.orig and the hand written class will be compiled into the binary package
by the Java compiler.

External Entities

Although any file can be overridden by a hand written implementation, it is not recommended
since generated changes need to be merged in any time the model changes. External entities
provide a clean interface to external code. Simply generate the empty EE once, copy the skeleton
class into the source folder and fill in the implementation.

Running a Ciera model

Ciera generates an "Application" class for every system deployment. This class contains a "main"
method and can be used as the entry point for the application, however, it can also be imported and
launched by a different hand written class that serves as the entry point for the application. The
name of this class can be specified by a mark. See Marking: Application name for more detail.

Running a Ciera model in a subordinate thread.

It is also possible to run an entire Ciera model in its own thread. This can be useful when working
with legacy code where the xtUML model is only a part of a larger application.

This may look something like the following:

ExampleApplication app = new ExampleApplication();
app.setup(args, logger);
app.initialize();
Thread t = new Thread(app);
t.start();

11

Marking#simulated-time
Marking#simulated-time
Marking#application-name

Then to send a message to a port of a modeled component:

app.Component1().getRunContext().execute(new ReceivedMessageTask() {
 @Override
 public void run() throws XtumlException {
 app.Component1().Port1().message(param1, param2);
 }
});

It is required to execute the port message in this way to ensure that any modeled code is running in
the context of the component’s thread (to avoid data synchronization issues).

Arbitrary code can be run in the context of a modeled component the following way:

app.Component1().getRunContext().execute(new GenericExecutionTask() {
 @Override
 public void run() throws XtumlException {
 // arbitrary code here
 // ...
 }
});

Built-in utilities
Ciera provides default implementations for useful external entities. Unlike other model compilers,
with Ciera, it is not supported or recommended to overwrite the built-in external entities with hand
written implementations (although this feature may be supported in the future). If a user would
like to write a custom implementation of these external entities, a completely new EE with unique
key letters should be created to do so.

The built-in EEs are included in the Ciera runtime library, so they should not be added to individual
projects. Read more about this in the Build section.

xtUML standard bridges

Ciera provides a standard implementation for the following EEs built into xtUML.

• Architecture (ARCH)

• Logging (LOG)

• Time (TIM)

Ciera does not implement the "State Save" external entity.

Ciera specific utilities

Ciera provides implementations for the following additional utilities. Detailed usage and
descriptions can be found in the API docs for each utility.

12

Build
https://xtuml.github.io/cieradoc/apidocs/latest/runtime/io/ciera/runtime/summit/util/ARCH
https://xtuml.github.io/cieradoc/apidocs/latest/runtime/io/ciera/runtime/summit/util/LOG
https://xtuml.github.io/cieradoc/apidocs/latest/runtime/io/ciera/runtime/summit/util/TIM

• Math library (MATH)

• String library (STRING)

• Command line parsing (CMD)

• Selection sorting (SORT)

< prev: Jump Start | next: Restrictions/Limitations >

13

https://xtuml.github.io/cieradoc/apidocs/latest/runtime/io/ciera/runtime/summit/util/MATH
https://xtuml.github.io/cieradoc/apidocs/latest/runtime/io/ciera/runtime/summit/util/STRING
https://xtuml.github.io/cieradoc/apidocs/latest/runtime/io/ciera/runtime/summit/util/CMD
https://xtuml.github.io/cieradoc/apidocs/latest/runtime/io/ciera/runtime/summit/util/SORT
Jump_Start
Restrictions_Limitations

Restrictions and Limitations
Since Ciera was first developed pragmatically as a personal side project, its design and
implementation was not driven by the same requirements as a "production" model
compiler — pieces were implemented little by litte as needed by the few applications it was used to
translate. This chapter describes the main restrictions and limiations of Ciera. Other restrictions are
peppered throughout the user guide where it was natrual to discuss them.

Naming
Ciera makes no attempt to correct or flag model element names which may cause compilation
errors. Users should avoid choosing model element names which may conflict with Java reserved
words, built in classes, or other model elements.

Specific cases to avoid:

• Names that would conflict with Java reserved words such as "enum", "public", "while", etc.

• Names that would conflict with built in Java language classes such as "String", "Exception", etc.

• Naming different types of model elements with the same name (e.g. a port named the same as a
class or an EE named the same as a datatype).

Coverage analysis
A more formal analysis of meta-model coverage has been performed and can be accessed online
Engineering Documentation: 11844_Coverage.

Interfaces
Ciera only supports asynchronous interface singals. Interface operations are not supported.
Modelers must design their applications to be asynchronous and operate without relying on
synchronous operations across component boundaries.

State Machines
State machines are the area of greatest weakness for Ciera. While technically any desired behavior
can be achieved with the current support, many model constructs are missing.

Class-based (assigner) state machines

Ciera does not support class-based state machines. To achieve the same result, a modeler must
create a new singleton class to act as assigner. Corollary to this, signal events are not supported.
OAL actions must be written to "forward" events to the appropriate instance state machine to
emulate this pattern

14

11844_Coverage

Creation events

Ciera does not support creation events. Instances must always be created synchronously. It is trivial
to achieve the same effect by creating an instance with a create statement and then subsequently
generating an event to the new instance. Sometimes it is necessary to create a dummy start state to
represent the non-existent state.

Polymorphic events

Ciera does not support polymorphic events. Modelers must manually "pass down" events by having
a switch like statement in the super type state machine to generate an event to the correct subtype.

Other

• Ciera does not support transition actions bodies

• Ciera does not support designating states as final states

Types
• Ciera does not support structured data types

• Ciera does not support declaring ranges on user defined types

Deployments
Deployments are an alternative style system modeling scheme introduced to meet the needs of the
MASL community. Ciera supports the component system modeling paradigm and does not provide
any support for deployments.

Miscellaneous
• Ciera does not support derived associations

• Ciera does not support delegations

• Ciera does not support exceptions

• Ciera does not honor default values on attributes (attributes are always initialized with the type
default value)

• Ciera does not support baseless referential attributes

• Ciear does not support passing parameters by reference

Known bugs
If you are running into a problem, be sure to check the issue tracker for known bugs.

< next: Features | next: Marking >

15

https://support.onefact.net/projects/ciera/
Feature
Marking

Marking
The following describes the available marks and how to use them.

Concepts
Marks are defined using comma separated values in the application.mark file. Available features
are defined using comma separated values in the features.mark file. This file must be present and
populated for marks to be loaded properly. The master version of this file can be found at
features.mark.

Marks in application.mark are in the format:

<path>,<mark_name>,<markable_type>,<value>

where <path> is a unique identifier for the element you desire to mark, <mark_name> is the name of
the feature, <markable_type> is the xtUML element type marked, and <value> is the value passed in
to the feature.

A * for the path denotes all elements of that type. A * for the path and for the markable type
denotes a system-wide mark.



BridgePoint includes a marking editor for editing application.mark files.
Unfortunately, BridgePoint does not include the wildcard (*) which the Ciera
marking mechanism uses. Perhaps BridgePoint can be extended in the future to
support Ciera style marks.

Application name
By default the application Java class (entry point for the application) is named
<project_name>Application where <project_name> is the name of the xtUML project with spaces
removed and each word capitalized. For example the application name for a project called "my
project" would be "MyProjectApplication". If you would like to change this default behavior, add the
following to your application.mark file.

,ApplicationName,,<app_name>

ex:
,ApplicationName,,CoreTool

where <app_name> is your custom name.

16

https://github.com/xtuml/ciera/blob/master/features.mark

Application package
By default the application Java class is generated into a top level package called <project_name>
where <project_name> is the name of the xtUML project with spaces removed and all lower case. For
example the package name for a project called "my project" would be "myproject". If you would like
to change this default behavior, add the following to your application.mark file.

,ApplicationPackage,,<package_name>

ex:
,ApplicationPackage,,io.ciera.tool

where <package_name> is your custom package location.

Root package
The root package is the package that is the translation unit for the compiler. This mark is required.
If it is missing, no code will be generated. Add the following to your application.mark file.

,RootPackage,,<package_name>

ex:
,RootPackage,,MicrowaveOven::components

where <package_name> is the double colon delimited path to the xtUML package you want to
translate (including the project name as the first path segment).

Sort comparator
Ciera does not guarantee order of selected instance sets, however an attribute can be configured as
the global sort comparator. For any selection, if the class has an attribute by that name, it will be
used to sort the result set in ascending order. This is mostly useful for model compilers when you
want elements to have a consistent order on each code generation. Ciera itself uses this feature to
support all named elements by the attribute "name". Add the following to your application.mark
file:

,SortComparator,,<attribute_getter>

ex:
,SortComparator,,getName

17

where <attribute_getter> is the name of the generated getter method for the attribute. Note that
this mark can be configured to be any method on the generated classes — it could be configured to
sort based on the return value of an instance operation.

Simulated time
Ciera supports simulated time. For more detail about how simulated time affects application
behavior, see Features: Simulated time. To enable simulated time for a component, add the
following to your application.mark file:

<component_name>,EnableSimulatedTime,Component,true

ex:
components::MicrowaveOven,EnableSimulatedTime,Component,true

where <component_name> is the double colon delimited path to the xtUML component (not including
the project name).


although this is a per component feature, Ciera does not yet support separate tasks
for individual components. Therefore, if any component in a system is marked
with simulated time, they will all operate in simulated time.

Initialization function
Components can be marked with exactly one initialization function that will execute after the
system is set up, but before any events, messages, or timers are handled. This is typically used to
"kickstart" an application, however components do not necessarily need one if they are designed
without any instance population setup needed or are configured at the time of the first external
stimulus. To mark an initialization function, add the following to your application.mark file:

<component_name>,InitFunction,Component,<function_name>

ex:
components::MicrowaveOven,InitFunction,Component,init

where <component_name> is the double colon delimited path to the xtUML component (not including
the project name), and <function_name> is the name of the xtUML domain function. The function
name must be unique within the component — Ciera does not support domain functions with
identical names even in different packages.

Component version
Ciera provides a default scheme for versioning generated components when using the Maven build

18

Features#simulated-time

plugin, however the version identifier can be overridden. To configure a custom version identifier,
add the following to your application.mark file:

<component_name>,Version,Component,<version>

ex:
components::MicrowaveOven,InitFunction,Component,v1.0-pre-release

where <component_name> is the double colon delimited path to the xtUML component (not including
the project name), and <version> is the custom version identifier.


Ciera will still include a generated timestamp with the version, even if the main
version identifier is overridden

Element exclusions
Ciera allows unused model elements (classes and associations) to be marked for exclusion. This can
be useful if you are including a subsystem from another project as a package reference and are not
using part of the model. See Features: Exclusions to read about the behavior and limitations of this
feature. To configure exclusions, add the following to your application.mark file:

<path>,Exclude,Model Class,true
<path>,Exclude,Association,true

ex:
ooaofooa::Domain::Enumerator,Exclude,Model Class,true
ooaofooa::Domain::R20,Exclude,Association,true

where <path> is the double colon delimited path to the xtUML class or association (not including the
project name).

Key letters for generated class name
Ciera uses the modeled class name to generate the Java class name for each generated class. Spaces
are removed and the first letter of each word is capitalized. If a class name is not suitable (e.g. it
would clash with a Java reserved name), the key letters can be used as the generated class name. To
confiugre a class to use the key letters as the name, add the following to your application.mark file:

<path>,UseKeyLettersForName,Model Class,true

19

Features#exclusions

ex:
architecture::statement::Break,UseKeyLettersForName,Model Class,true

where <path> is the double colon delimited path to the xtUML class (not including the project
name).

Port implementation class
Ciera allows users to provide their own implementations for ports. See Features: Custom IPort
implementation to read about the behavior and limitations of this feature. To configure exclusions,
add the following to your application.mark file:

<path>,BaseClass,Port,<class_name>

ex:
Tracking::Tracking::UI,BaseClass,Port,HttpPort

where <path> is the double colon delimited path to the xtUML port (not including the project name),
and <class_name> is the name of the base class for generated ports.


The marked base class must either be a fully qualified class name or it must be
defined in the same package into which the port will be generated.

Other marks
Marks specifically related to instance loading, templating, and experimental features will be
covered in Persistence, Templating, and Experimental Features respectively.

< next: Restrictions/Limitations | next: Build >

20

Features#custom-iport-implementation
Features#custom-iport-implementation
Persistence
Templating
Experimental
Restrictions_Limitations
Build

Build

Quick word about Maven
Ciera itself is built using Maven and it is used extensively to build other Ciera-based applications.
Maven is an incredibly useful tool, but it can be frustrating if you do not understand it. I
recommend taking a couple hours to read and learn the basics.

What is Maven?

Requirements for a Ciera build
Ciera requires three things for a successful build:

1. An input model file with parsed OAL

2. A set of application marks (and feature specification)

3. An output location

The rest of the topics in this chapter will expound on how each of those three elements is
configured and provided to the compiler.

Pre-build
First, Ciera requires clean, parsed model data with all proxies resolved, in a single file. This has
historically been a task handled for model compilers by the BridgePoint tool itself. Ciera supports
pre-built output from BridgePoint.

Ciera also supports ouptut from the pyxtuml pre-builder. pyxtuml is a Python based dynamic xtUML
tool used as the model backend by the pyrsl RSL generator. Details about pyxtuml, its author and its
history can be seen in the pyxtuml documentation. Specific details about the pre-builder feature
can be seen in the OAL prebuilder section. Using pyxtuml allows Ciera to be free of build
dependencies on BridgePoint. Ciera projects can be built and executed entirely on a system with no
BridgePoint installation, making it much easier to integrate into server builds.

The pyxtuml pre-builder is significantly faster for small-medium sized projects, since it does not
suffer the weight of Eclipse, however for very large projects, the BridgePoint pre-builder is actually
faster. It should also be noted that the BridgePoint pre-builder remains the gold standard
implementation for OAL parsers.

The pyxtuml pre-builder is the preferred pre-build solution for Ciera projects because of its light
weight and portability, however it does introduces an external dependency. pyxtuml must be
installed on the system:

pip install pyxtuml

21

https://maven.apache.org/what-is-maven.html
https://pyxtuml.readthedocs.io/en/master/
https://pyxtuml.readthedocs.io/en/master/cli.html#oal-prebuilder

Components of the pom.xml file
Let’s take a look at the pom.xml file for the MicrowaveOven example:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>io.ciera</groupId>
 <artifactId>MicrowaveOven</artifactId>
 <packaging>jar</packaging>
 <version>1.0.0-SNAPSHOT</version>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 </properties>
 <dependencies>
 <dependency>
 <groupId>io.ciera</groupId>
 <artifactId>runtime</artifactId>
 <version>2.1.0</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>io.ciera</groupId>
 <artifactId>ciera-maven-plugin</artifactId>
 <version>2.1.0</version>
 <executions>
 <execution>
 <id>pre-build</id>
 <goals>
 <goal>pyxtuml-pre-build</goal>
 </goals>
 </execution>
 <execution>
 <id>ciera-core</id>
 <goals>
 <goal>core</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 <resources>
 <resource>
 <directory>${project.basedir}</directory>

22

 <filtering>true</filtering>
 <includes>
 <include>models/**/*.xtuml</include>
 <include>.project</include>
 </includes>
 </resource>
 <resource>
 <directory>${project.build.directory}/generated-sources/java</directory>
 <filtering>true</filtering>
 <includes>
 <include>**/*.properties</include>
 </includes>
 </resource>
 </resources>
 </build>
</project>

Let’s break this down section by section:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>io.ciera</groupId>
 <artifactId>MicrowaveOven</artifactId>
 <packaging>jar</packaging>
 <version>1.0.0-SNAPSHOT</version>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 </properties>

This is the basic setup for a Maven project. We have group and artifact identifers, packaging
scheme, version identifier and some properties which define our character set and Java compiler
version.

<dependencies>
 <dependency>
 <groupId>io.ciera</groupId>
 <artifactId>runtime</artifactId>
 <version>2.1.0</version>
 </dependency>
</dependencies>

Next we have our dependency section. All Ciera-based projects depend on the Ciera runtime library
included here. In this case, it is the only dependency.

23

<build>
 <plugins>
 <plugin>
 <groupId>io.ciera</groupId>
 <artifactId>ciera-maven-plugin</artifactId>
 <version>2.1.0</version>
 <executions>
 <execution>
 <id>pre-build</id>
 <goals>
 <goal>pyxtuml-pre-build</goal>
 </goals>
 </execution>
 <execution>
 <id>ciera-core</id>
 <goals>
 <goal>core</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>

The first part of the build section defines that this project uses the ciera-maven-plugin. This is the
worker that actually handles the execution of the compiler. There are two execution units that we
make use of: the pre-build and the core generation. The pre-build is done by pyxtuml and the core
generation is done by the core model compiler. Other projects might also have executions for
generating instance loaders/dumpers or template utilities. The pre-build section can be used to
configure the BridgePoint pre-builder if that is preferred. See the ciera-maven-plugin in detail
section for more on BridgePoint pre-builder.

<resources>
 <resource>
 <directory>${project.basedir}</directory>
 <filtering>true</filtering>
 <includes>
 <include>models/**/*.xtuml</include>
 <include>.project</include>
 </includes>
 </resource>

This section is standard for Ciera-based projects. It simply indicates to maven that all .xtuml files
should be packaged into the output artifact (JAR). This allows Ciera-based xtUML "library" projects
to be distributed as dependencies. See the next section for detail.

24

#ciera-maven-plugin-in-detail
#ciera-maven-plugin-in-detail

 <resource>
 <directory>${project.build.directory}/generated-sources/java</directory>
 <filtering>true</filtering>
 <includes>
 <include>**/*.properties</include>
 </includes>
 </resource>
 </resources>
 </build>
</project>

This final section is also standard for Ciera-based projects. It assues that .properties files are
included as resources in the output artifact. This is used to store the version information for
components.

Ciera dependency strategy
Ciera leans into the dependency mechanism of Maven and therefore utilizes the Maven
dependency mechanism to specify other xtUML projects that need to be included for inter-project
references. A major problem with including other projects is dealing with fragile filesystem relative
paths to locate model elements. Eclipse solves this using their workspace model (virtual filesystem)
to bring all imported projects together. Ciera needs to be independent of BridgePoint and Eclipse.

The ciera-maven-plugin automatically invokes the pyxtuml pre-builder and passes the path to
artifacts listed as Maven dependencies. If an xtUML project was built and installed in the local
Maven repository or exists on an accessible remote repository, it can be accessed and passed
directly to pre-builder.

Consider the GPS Watch example:

25

<dependencies>
 <dependency>
 <groupId>io.ciera</groupId>
 <artifactId>runtime</artifactId>
 <version>2.1.0</version>
 </dependency>
 <dependency>
 <groupId>io.ciera</groupId>
 <artifactId>HeartRateMonitor</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>io.ciera</groupId>
 <artifactId>Location</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>io.ciera</groupId>
 <artifactId>Tracking</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>io.ciera</groupId>
 <artifactId>UI</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>com.googlecode.lanterna</groupId>
 <artifactId>lanterna</artifactId>
 <version>3.0.1</version>
 </dependency>
</dependencies>

The GPS Watch example is comprised of five separate projects. Each has its own pom.xml in which its
.xtuml files are zipped up in the output JAR. The system deployment project that is translated with
Ciera declares Maven dependencies on each of the four "library" projects and all of their xtUML
modeled elements are pulled in automatically to the pre-build.

I see a future in which a widely used data model like the mcooa project is built with Maven and
published and model compiler projects can easily access it in this way without even needing the
project on their machine much less in their development folder.

(I see a further future where Ciera can reuse compiled implementations of components directly
without re-translation, but that is not a reality now.)

ciera-maven-plugin in detail
Each of the "goals" the ciera-maven-plugin provides are documented below.

26

pyxtuml-pre-build

The pyxtuml pre-build goal takes input files and executes the pyxtuml pre-build utility to produce
clean SQL input for a Ciera compiler. It has the following configuration parameters:

outputFile

The location of the output SQL file. The default value is <project_name>.sql in the project build
directory (target/ is the default build directory for Maven, but can be configured differently in the
main build section of the pom.xml file).

modelDirs (array)

This list of directories to look for input models. This option is typically only used to specify model
dependencies by path instead of included as a dependency (described above). This has some benefit
in flexibility especially of required projects are not built with Maven, but suffers in its reliance on
consistent filesystem paths. This method of including dependency models is not recommended.

includeDependencyModels

If "true", models dependency artifacts are searched for model files. This is typically false if
"modelDirs" is used. Default value is "true".

includeLocalModel

If "true", the models/ directory in the current project is searched for model files. This is typically
false only if "modelDirs" is being used. Default value is "true".

pythonExecutable

Specifies the name/path of the Python executable to use for pyxtuml. The default value is "python"
which will execute the default Python interpreter installed on the system. This value can be
changed to use an alternate interpreter. For example, the Ciera projects themselves use the pypy
interpreter because it parses the OAL almost three times faster than standard CPython.


If you use a different Python interpreter, you may need to install pyxtuml again for
that specific interpreter (e.g. pip3 install pyxtuml for python3)

Example

In addition to the MicrowaveOven example given above, consider the following pom.xml snippet
from the Ciera core model compiler.

27

<execution>
 <id>pre-build</id>
 <goals>
 <goal>pyxtuml-pre-build</goal>
 </goals>
 <configuration>
 <includeDependencyModels>false</includeDependencyModels>
 <modelDirs>
 <param>${project.basedir}/../runtime/models</param>
 <param>${bpLoc}/src/org.xtuml.bp.ui.marking/models</param>
 <param>${mcLoc}/model/mcooa/models</param>
 </modelDirs>
 </configuration>
</execution>

In this example, models are not included from the dependency list, but paths are specified in the
configuration of the pre-build itself.

This is done because Ciera is built with itself, and as such, the Ciera runtime library it requires as a
runtime dependency is not the same as the one it needs as a build dependency (self-building
compilers are confusing!).

bridgepoint-pre-build

The BridgePoint pre-build goal uses the BridgePoint CLI to pre-build a project in a pre-defined
Eclipse workspace. It requires that BridgePoint be installed and a workspace be set up, however it
does not require a window manager (it can still be part of a server build).

bpHome

The location of the BridgePoint installation. If no value for "bpHome" is specified, the build will fail.

workspace

The location of the BridgePoint workspace where the models are imported. The name of the Maven
project is used to determine which project in the workspace to build. This implies that the name of
the Maven project and the name of the BridgePoint project must match. If no value for "workspace"
is specified, the build will fail. All models required for the build must be imported into the
workspace including the Ciera runtime library. An easy way to check this is to run a "parse all" in
the BridgePoint workspace and verify that there are no parse errors due to missing model
elements.

Environment variables

The previous two options can be specified by environment variables BPHOME and WORKSPACE
respecitively. This can be useful if you are working on multiple Ciera projects in the same
workspace or if you prefer not to couple development workspace and tool paths with your project
source code.

28

Example

<execution>
 <id>pre-build</id>
 <goals>
 <goal>bridgepoint-pre-build</goal>
 </goals>
 <configuration>
 <bpHome>/Users/levi/xtuml/m6190.2019-12-18-1004_nightly-
build/BridgePoint.app/Contents/Eclipse</bpHome>

<workspace>/var/folders/6n/ybm_82hn3wq4w972zjl90q9w0000gp/T/tmp.issCz64J</workspace>
 </configuration>
</execution>



Since BridgePoint manages the acutal pre-build, the location of the output model
file is determined by BridgePoint. You will have to refer to the BridgePoint project
to confirm what this location is. As of this writing, BridgePoint outputs pre-built
model files to gen/code_generation/<project_name>.sql where <project_name> is the
name of the BridgePoint project.

core

The core goal is the main code generation tool. For most Ciera projects, one of the pre-build goals
and the core goal are all that is necessary to build the project.

input

The location of the input pre-built model file for translation. The default value is the same as the
default outputFile of the pyxtuml pre-build goal.

output

The location of an output file where instances of OOA of OOA and Ciera architectural models will be
dumped. The default value is an empty string (which causes the compiler to skip dumping output).
This option is used if there is a downstream compiler that you need to load the instance population
to generate additional Java source files.

genDir

The location where the generated Java source will be output. The default value is generated-
sources/java in the project build directory.

Example

29

<execution>
 <id>ciera-core</id>
 <goals>
 <goal>core</goal>
 </goals>
</execution>

sql

The SQL goal generates a SQL insert statement loader/dumper for the model. For more information,
see the Persistence chapter. The configuration parameters are identical to the core goal.

template

The template goal parses a set of RSL templates and generates a template registry. It also processes
RSL substitutions in literal strings within OAL. For more information, see the Templating chapter.
The configuration parameters are identical to the core goal.

Building without Maven
Although it is not recommended, Ciera is not strictly dependent on Maven. This section will
demonstrate step by step how to download the Ciera artifacts, build and run the MicrowaveOven
example project.

Download the artifacts

The Ciera runtime library and core generation tool are needed. Download directly from Maven
central with:

wget https://search.maven.org/remotecontent?filepath=io/ciera/runtime/2.1.0/runtime-
2.1.0.jar -O runtime.jar
wget https://search.maven.org/remotecontent?filepath=io/ciera/tool-core/2.1.0/tool-
core-2.1.0.jar -O core.jar
wget https://search.maven.org/remotecontent?filepath=org/antlr/antlr4-
runtime/4.7.1/antlr4-runtime-4.7.1.jar -O antlr.jar

Pre-build

Pre-build the model with:

python -m bridgepoint.prebuild -o MicrowaveOven.sql runtime.jar models/

Alternatively, import the project into a BridgePoint workspace and import existing projects from
the runtime.jar archive and run a pre-build within BridgePoint.

30

Persistence
Templating

Generate code

Generate Java source with:

mkdir src-gen
java -cp runtime.jar:antlr.jar:core.jar io.ciera.tool.CoreTool -i MicrowaveOven.sql
--gendir src-gen --cwd .

Compile the Java code

Compile Java with:

find src-gen/ -name *.java > sources.txt
javac -cp runtime.jar -d bin @sources.txt

Run the application

Run with:

java -cp runtime.jar:bin microwaveoven.MicrowaveOvenApplication

Ciera core generator CLI

As demonstrated above, it is possible to use Ciera without Maven — in fact, the Ciera compiler itself
is only a small piece in a longer build chain including pre-build, generation, compilation, and
execution. The code generator has its own command line interface and Maven simply maps
configuration from the pom.xml file to existing CLI options.

The following is the output of passing -h to the Ciera tool:

$ java -cp runtime.jar:antlr.jar:core.jar io.ciera.tool.CoreTool -h
Usage:
 --cwd <root_dir> : base working directory
 --gendir <gen_dir> : generated output directory
 -i <input_file> : input file
 -o <output_file> : output file
 --use-version <use_version> : version identifier for generated components
 -h, --help : Print usage information.

Running projects
When running projects generated with Ciera, in addition to the the compiled Java classes, some
libraries must be in the classpath.

• For all Ciera generated projects, the Ciera runtime library must be in the classpath. In general,

31

the runtime library must have the same major version as the version of the code generation tool
used to generate the code (for more details on the Maven versioning policy, see Maven version
number policy).

• For projects using JSON serialization for message passing, the JSON library found here is
required.

• For projects using SQL instance loading, the Antlr 4.7.1 runtime library is required.

• Any other external libraries referenced in hand written code must be on the classpath.

If you are using Maven as your build tool, all of these dependencies will be downloaded in your
local Maven repository which is a nice consistent place to reference them. The Ciera example
projects each have a "run" bash script which builds the classpaths from the JARs installed in the
local Maven repository.

Using the Ciera "nightly build"
Release versions of Ciera will be published to the Maven central repository. This is the default
repository for Maven and artifacts hosted here will be downloaded automatically with no extra
configuration.

Snapshot versions of Ciera (i.e. development versions/nightly builds) are hosted in the Sonatype
snapshot repository. To access development versions of Ciera, you must add the following
<repository> and <pluginRepository> definitions in your project pom.xml or in your Maven
settings.xml. More information on declaring additional repositories can be found here.

<repository>
 <id>snapshot-repo</id>
 <url>http://oss.sonatype.org/content/repositories/snapshots</url>
 <releases><enabled>false</enabled></releases>
 <snapshots><enabled>true</enabled></snapshots>
</repository>

<pluginRepository>
 <id>snapshot-repo</id>
 <url>http://oss.sonatype.org/content/repositories/snapshots</url>
 <releases><enabled>false</enabled></releases>
 <snapshots><enabled>true</enabled></snapshots>
</pluginRepository>

< prev: Marking | next: Persistence >

32

https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy
https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy
https://search.maven.org/artifact/org.json/json/20190722/bundle
https://maven.apache.org/pom.html#Repositories
Marking
Persistence

Persistence
Ciera was built as a model compiler to build model compilers. Therefore one of the key design
requirements was for it to be able to load and dump instances of the xtUML meta-model in the
BridgePoint persistence format (SQL). Ciera has a built-in SQL loader/dumper generator, but also
supports other types of loaders.

SQL loader/dumper
Projects can be generated with a SQL insert statement loader/dumper. Instances can be loaded from
standard input or a file or set of files and be dumped to standard output or a file.

The loader/dumper can serialize and reload entire instance populations including stateful classes.
In flight events and pending timers can be serialized and re-loaded.

Enabling the SQL loader/dumper

To enable the SQL tool, first add the InstanceLoading mark with "Sql" as the value. See Instance
loading for mark details. Next add the sql tool as an execution step to the project pom.xml. You will
need to define an ouptut location for the core code generator so the instances can be loaded by the
sql tool to generate the loader/dumper. This file can be anything, but simply serves as an
intermediate landing location between the two code generators:

<execution>
 <id>ciera-core</id>
 <goals>
 <goal>core</goal>
 </goals>
 <configuration>
 <output>${project.build.directory}/b.xtuml</output>
 </configuration>
</execution>
<execution>
 <id>ciera-sql</id>
 <goals>
 <goal>sql</goal>
 </goals>
 <configuration>
 <input>${project.build.directory}/b.xtuml</input>
 </configuration>
</execution>

The SQL external entity

To use the SQL loader/dumper, you must make calls to the SQL external entity.

33

SQL::load();

will load instances from standard input.

SQL::serialize();

will write the instance population to standard output. More detailed documentation can be found
in the API docs

Limitations

Types

The SQL loader/dumper tool can only generate loaders and dumpers for class models with
attributes of the core types and enumeration types. User defined types and structured types are
currently not supported, however attributes typed with user defined types can be marked as non-
persistent and therefore the instance population can still be loaded excluding those attributes.

Formalized associations

The SQL loader/dumper tool only supports class models with all formalized associations.
Supporting unformalized relationships is a goal for the future, however it may never be part of the
SQL loader/dumper and may be part of a different loader/dumper utility.

Complete population

Although multiple files can be loaded, the loader expects all related instances to be loaded at once.
Because of this, multiple file support is not as useful because the populations held by the individual
files would have to be disjoint.

Similarly, serialization only supports dumping the entire population at once (to standard output or
a file).

Generic loader interface
Ciera provides an API for writing extremely customizable population loaders. This feature is
intended to support any type of loaders, but especially loaders based on parsing a natural modeling
language.

The API consists of two parts. An external entity call that can be executed in an OAL action to hook
into a hand written Java class and pass an argument list, and a set of bridges that allow hand
written code to create and manipulate instances from hand written code.

The details of this API can be found in the LOAD external entity API docs

34

https://xtuml.github.io/cieradoc/apidocs/latest/runtime/io/ciera/runtime/instanceloading/sql/util/SQL
https://xtuml.github.io/cieradoc/apidocs/latest/runtime/io/ciera/runtime/instanceloading/generic/util/LOAD

Support for other loader/dumpers
Ciera has been written in a way to support implementation of other types of loaders in the future.
Ciera could even support multiple types of instance loaders for a single project.

Persistence related marks

Instance loading

The instance loading mark registers an instance loader for a component. For SQL instance loading,
this is required with the value "Sql"

<component_name>,InstanceLoading,Component,<loader_id>

ex:
pei::pei,InstanceLoading,Component,Sql

where <component_name> is the double colon delimited path to the xtUML component (not including
the project name), and <loader_id> is the identifier of the specific instance loader/dumper.
Currently the only supported value is "Sql".

Non persistent instance IDs

By default, SQL loader/dumpers will be generated to load and dump architectural instance IDs. The
architectural IDs are required to load instance populations with pending timers and in flight
events. To disable architectural ID persistence, add the following mark:

,NonPersistentInstanceIds,,true

Non persistent elements

To exclude an attribute or class from persistence, add the following mark:

<path>,NonPersistent,Attribute,<exclusion_type>
<path>,NonPersistent,Model Class,<exclusion_type>

ex:
ooaofooa::Instance::Timer::expiration,NonPersistent,Attribute,load_only
ooaofmarking::Markable Element Type,NonPersistent,Model Class,true

where <path> is the double colon delimited path to the xtUML class or attribute (not including the
project name), and <exclusion_type> determines how it is excluded. For classes "true" is the only

35

acceptable value. For attributes, "true" causes the attribute to be completely excluded from the
schema. "load_only" keeps the attribute in the schema, but excludes it from load. At load time, the
attribute will be assigned the default value of its type and at serialization, the attribute’s value will
be serialized normally.

< prev: Build | next: Templating >

36

Build
Templating

Templating
Another design requirement for Ciera as a model compiler tool was to support RSL templates. RSL
is a scripting/templating language that has been used for many years to build interpreted model
compilers. pyrsl appeared several years ago as a modern interpreter for the language

The Ciera implementation of RSL templating parses the template files at build time and generates a
"template registry" of Java methods that take a set of symbols as input and produce a string as
output.

RSL template tool

Enabling the template tool

To enable the SQL tool, first add the TemplateDir mark with the path to your templates as the value.
See Template directory for mark details. Next add the template tool as an execution step to the
project pom.xml. You will need to define an ouptut location for the core code generator so the
instances can be loaded by the template tool to generate the template registry. This file can be
anything, but simply serves as an intermediate landing location between the two code generators:

<execution>
 <id>ciera-core</id>
 <goals>
 <goal>core</goal>
 </goals>
 <configuration>
 <output>${project.build.directory}/b.xtuml</output>
 </configuration>
</execution>
<execution>
 <id>ciera-template</id>
 <goals>
 <goal>template</goal>
 </goals>
 <configuration>
 <input>${project.build.directory}/b.xtuml</input>
 </configuration>
</execution>

The T external entity

To use templates, you must make calls to the T external entity. Set the output directory with

T::set_output_directory(dir:"folder");

Include a template with

37

https://pyrsl.readthedocs.io/en/master/

T::include(file:"t.mytemplate.java");

More detailed documentation can be found in the API docs

Limitations

RSL support

The Ciera template implementation does not support all of RSL.

Ciera supports the following:

• buffers

◦ blobs of text

◦ substitution variables

◦ escaped characters (as defined in pyrsl)

• format characters in substitution variables

• if/elif/else statements

• all expressions (conditional expressions for if statements)

• literals

◦ boolean

◦ integer

◦ real

◦ string

• substitution variables in string literals

Ciera does not support the following:

• select statements

• create/delete statements

• relate statements

• variables

• for/while loops

• fragments

• etc, etc, etc…

Ciera only supports the core templating constructs and not any of the query constructs.


You can decide for yourself whether or not this is a limitation or a feature — it
forces users to write true templates. There will be no future plan to implement the
rest of the RSL specification in Ciera.

38

https://xtuml.github.io/cieradoc/apidocs/latest/runtime/io/ciera/runtime/template/util/T
https://pyrsl.readthedocs.io/en/master/language-reference.html#escaping-special-characters

Templating marks

Template directory

The location of your template files must be declared through a mark. Any invocations to T::include
in OAL will be relative paths to this directory. If this mark is not included, the build will fail.
Configure the mark as follows:

,TemplateDir,,<location>

ex:
,TemplateDir,,templates

where <location> is the path to the directory where the templates are located.

< prev: Persistence | next: Experimental Features >

39

Persistence
Experimental

Experimental Features
There are a handful of experimental/incomplete features lingering around Ciera. Most of these had
to do with a demo produced in 2018 where Ciera was used to generate code for the AWS cloud
architecture. Activities were run in AWS Lambdas, DynamoDB was used for instance population
persistence, and AWS API Gateway was used to plumb components together through HTTP routes.

The demo presentation can be found here and demo video here

This chapter will be brief as there is no point in detailed documentation on features that don’t
work — the main point is to know that they exist.

Asynchronous applications
Partial support for generating asynchronous applications is available through a mark. Typically an
xtUML architecture will have some sort of long running dispatch loop (whether it is system-wide or
more granular) that handles incoming stimuli (port messages and delayed events). Each time an
outside stimulus is handled, the resulting generated events are handled until the system quiesces.

An async application responds to these outside stimuli by dynamically loading to handle a single
request and then terminating after the transaction is completed instead of being a long running
process. Thousands of instances of these applications could be deployed in a distributed
architecture and perfectly respond to fluctuations in system load without any overhead during
quiet times.

To turn on generation of async applications, configure the following mark

,AsyncApplication,,true

Amazon DynamoDB instance loader/dumper
A basic implementation of a DynamoDB instance loader/dumper was implemented. It was not fast
and it had many bugs. It was essentially a port of the SQL instance loader/dumper with one key
difference. It was transactional, meaning each serialization only dumped the delta between the
final instance population and what was loaded at the beginning.

This project has not been maintained, but the old source code can be found in src-other at the root
of the main repository.

HTTP endpoints
Another feature related to distributed asynchronous applications was HTTP endpoints. This mark
allowed ports to specify an HTTP endpoint in lieu of a satisfaction with another port. Outbound
messages would be serialized to JSON format and sent to the marked HTTP endpoint where they
would be routed to a component to handle them.

40

https://leviathan747.github.io/assets/images/GPSCiera.pdf
https://www.youtube.com/watch?v=nY984Yev5GI

To enable this feature for a port, add the following mark:

<path>,HttpEndpoint,Port,<url>

ex.
Tracking::Tracking::LOC,HttpEndpoint,Port,https://7t6vbnkhn4.execute-api.us-east-
1.amazonaws.com/test

Ciera Maven archetype
A non-AWS related experimental feature is the Ciera Maven archetype project. Maven provides a
mechanism for generating "template" projects to help users get started with a plugin or other tool.
This would allow a user to run a maven command, enter a few parameters and have a new Ciera
project set up and ready to build without having to mess with the dirty details of the pom.xml file all
the time (or more likely, just copy and paste from an existing project!)

I do intend to finish this project, however, it is not ready at the moment. The existing source can be
found in src-other/maven/ciera-maven-archetype at the root of the main repository.

< next: Templating | >

41

Templating

	Ciera User Guide
	Table of Contents
	Preface
	History
	What Ciera is
	What Ciera is not
	Relationship to Maven
	Versioning policy

	Jump Start
	Example projects
	Dependencies
	Download the Ciera runtime library
	Creating an xtUML project
	Setting up the Maven build
	Building the project
	Running the project
	Congrats!

	Features
	System modeling
	Multi domain support
	JSON serialized message passing
	Component versioning

	Class modeling
	Exclusions
	Use key letters for name

	State modeling
	OAL action modeling
	Package references
	Automatic selection sorting
	Simulated time
	Integration with hand written Java
	Basic principle
	External Entities
	Running a Ciera model
	Running a Ciera model in a subordinate thread.

	Built-in utilities
	xtUML standard bridges
	Ciera specific utilities

	Restrictions and Limitations
	Naming
	Coverage analysis
	Interfaces
	State Machines
	Class-based (assigner) state machines
	Creation events
	Polymorphic events
	Other

	Types
	Deployments
	Miscellaneous
	Known bugs

	Marking
	Concepts
	Application name
	Application package
	Root package
	Sort comparator
	Simulated time
	Initialization function
	Component version
	Element exclusions
	Key letters for generated class name
	Port implementation class
	Other marks

	Build
	Quick word about Maven
	Requirements for a Ciera build
	Pre-build
	Components of the pom.xml file
	Ciera dependency strategy
	ciera-maven-plugin in detail
	pyxtuml-pre-build
	bridgepoint-pre-build
	core
	sql
	template

	Building without Maven
	Download the artifacts
	Pre-build
	Generate code
	Compile the Java code
	Run the application
	Ciera core generator CLI

	Running projects
	Using the Ciera "nightly build"

	Persistence
	SQL loader/dumper
	Enabling the SQL loader/dumper
	The SQL external entity
	Limitations

	Generic loader interface
	Support for other loader/dumpers
	Persistence related marks
	Instance loading
	Non persistent instance IDs
	Non persistent elements

	Templating
	RSL template tool
	Enabling the template tool
	The T external entity
	Limitations

	Templating marks
	Template directory

	Experimental Features
	Asynchronous applications
	Amazon DynamoDB instance loader/dumper
	HTTP endpoints
	Ciera Maven archetype

